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A B S T R A C T   

Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, 
food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive eco-
systems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric 
of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and 
distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete 
list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the 
contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of 
use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in 
inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing 
Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of 
phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities 
to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new 
CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and 
mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS 
radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development 
activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS.   

1. Introduction 

Lakes and other inland waterbodies cover ~3% of the Earth's con-
tinental surface (Downing et al., 2006). They provide critical ecosystems 
and habitats and offer essential support for human health and well-being 
by providing drinking water, food, and recreation. Furthermore, lakes 
contribute to global-scale processes through their influence on many 
aspects of the biosphere, including methane fluxes (e.g., Bastviken et al., 

2004; Walter et al., 2006), carbon cycles (MacKay et al., 2009; Men-
donça et al., 2017), and other factors that regulate Earth's climate (e.g. 
Cole et al., 2007; Downing, 2009, 2010; Raymond et al., 2013; Tranvik 
et al., 2009). Global lake conditions are often sensitive to human be-
haviors, such as land use changes, and thus may benefit from manage-
ment and mitigation activities. It is therefore beneficial that lakes are 
monitored for long-term changes in water quality and anthropogenic 
induced responses that can influence human and ecosystem health, as 
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well as global-scale processes. Robust and consistent water quality data 
sets remain critical for effective and interpretable lake monitoring. 

Measurements of near-surface concentrations of the photosynthetic 
pigment chlorophyll-a (Chl; μg L− 1) provide a useful and commonly 
measured metric of water quality. Most federal, state, and local in situ 
water quality monitoring programs collect Chl, albeit with varied mea-
surement techniques (U.S. Environmental Protection Agency, 2000, 
2009). The most conventional approach to obtaining Chl is collecting a 
discrete in situ sample from a dock or boat/ship (U.S. Environmental 
Protection Agency, 2011). Although high quality in situ-based sampling 
provides an essential way to measure a comprehensive suite of lake 
conditions and variables, it has limitations, especially in terms of tem-
poral and spatial data set coverages. The large number of inland waters, 
many of which are in remote locations, makes routine in situ sampling 
costly and logistically challenging, if not nearly impossible over long 
distances and durations (Papenfus et al., 2020). Single or limited sam-
ples from a waterbody may not provide meaningful synopses of the state 
of the entire waterbody (e.g., Lesht et al., 2018; Kallio et al., 2003; Vos 
et al., 2003) While temporal limitations can be partially overcome using 
continuous probes, their spatial distributions remain sparse. 

Satellite-borne ocean color instruments offer useful complements to 
in situ data collection that overcome spatio-temporal sampling limita-
tions. At a minimum, these spectroradiometers measure visible and 
near-infrared (NIR) radiances at discrete wavelengths at the top-of-the 
atmosphere. Broadly speaking, atmospheric correction algorithms are 
applied to remove contributions of the atmosphere and surface reflec-
tion from the total signal (e.g., Mobley et al., 2016). Bio-optical algo-
rithms are then applied to the remaining aquatic reflectances to produce 

estimates of biogeophysical properties, such as Chl (e.g., Hu et al., 2012, 
2019; O'Reilly and Werdell, 2019), near-surface concentrations of sus-
pended sediments (e.g., Ondrusek et al., 2012), spectral inherent optical 
properties (Werdell et al., 2018), and other indices of water quality and 
composition (e.g., Lee et al., 2007; Olmanson et al., 2008). Such 
remotely sensed data records can be used effectively to assess long-term 
system changes on broad spatial and temporal scales, as well as observe 
dynamic short-term events, such as episodic algal blooms. These data 
records can also be reevaluated retrospectively as remote sensing 
methods improve and lake management and mitigation needs evolve. 
Altogether, these capabilities offer an increased ability to quantify sat-
ellite resolvable inland water bodies' ecosystem events, such as harmful 
algal blooms, enabling statistical inferences on their temporal fre-
quency, spatial extent, magnitude, and occurrence (Clark et al., 2017; 
Urquhart et al., 2017; Mishra et al., 2019; Coffer et al., 2020). 

Satellite data sets provide value for early warning event detection 
and decision support when other monitoring resources are limited or not 
available for deployment. Additionally, annual potential avoided costs 
associated with satellite Chl measures were estimated between $5.7 and 
$316 million US$ (Papenfus et al., 2020). That said, in practice they 
provide a complement to, not a replacement for, in situ lake monitoring, 
as remote sensing measurements have intrinsic challenges. First, the 
temporal distributions of useful retrievals are dictated by the con-
founding interferences of clouds and atmospheric aerosols (Frouin et al., 
2019) and satellite-specific orbital repeatability (IOCCG, 2007), both of 
which influence the frequency with which any given water body is 
observed. Second, ocean color measurements are restricted by nature to 
a spectrally-dependent near-surface layer (Gordon and McCluney, 

Fig. 1. Maps of resolvable lakes for CONUS and Alaska. Black represents a satellite resolvable lakes for inland waters data set. A Minnesota inset map (dashed grey 
rectangle) highlights the large number of lakes across the state, which account for 70% of the lakes in this study. Resolvable lakes in CONUS meet a minimum three 
satellite pixel requirement. Alaska lakes only have a single pixel requirement; therefore, smaller lakes are shown in Alaska. 
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1975). Third, the measurements are considered most reliable when 
collected offshore because of complications with adjacency effects 
(Bulgarelli et al., 2014) and mixed land-water pixels, both of which limit 
the assembly of a complete synopsis of a waterbody. Additionally, most 
satellite instruments designed for global ocean color have ground sam-
ple sizes (e.g. sensor pixel size) between 300 and 1000 m (Werdell and 
McClain, 2019), which limit the number of resolvable water bodies 
(Clark et al., 2017). As such, the inland waters discussed in this paper 
refer primarily to larger lakes and reservoirs and not narrower or smaller 
waters such as streams, rivers, smaller lakes/reservoirs, and ponds 
(Fig. 1). The ground sample size also establishes a lower limit on the 
spatial scale of any aquatic feature that can be detected (that is, intra-
pixel variability cannot be resolved). Finally, ocean color remote sensing 
provides a finite number of available biogeophysical products relative to 
the larger number of variables that can be measured via in situ sampling 
(e.g., nutrient and toxin concentrations cannot be directly estimated 
from ocean color alone) (IOCCG, 2018). 

Despite some limitations, 40 years of satellite ocean color has suc-
cessfully facilitated insights into the long-term state of waterbodies, as 
well as their spatial and temporal variabilities (e.g., Binding et al., 2015; 
Dutkiewicz et al., 2019; Gregg et al., 2017). Heritage satellite ocean 
color algorithms, however, were developed primarily for the global 
ocean and cannot always be appropriately applied to lakes and reser-
voirs given their optical complexity, overlying atmospheric conditions 
and altitudes, and proximity to land, to name only a few confounding 
issues (IOCCG, 2018). A variety of approaches has more recently 
emerged to address these challenges and extend Chl estimates from the 
oligotrophic open ocean to diverse systems and hypereutrophic lakes. 
Neil et al. (2019) presents a thorough review of 19 different approaches 
to derive inland water Chl from satellite ocean color that consider a 
range of empirical, semi-analytical, peak height methods, and neural 
network methods and an assessment of their performance in optically 
complex inland waters. Their results revealed the difficulty of estab-
lishing a single standardized approach. A need exists, however, to 
standardize metrics used for water quality assessment, especially for 
management that has human health implications (Clark et al., 2017; 
Coffer et al., 2020; Mishra et al., 2019; Urquhart et al., 2017). Stan-
dardized remote sensing products would also provide a foundation with 
which to compare lake quality assessments around the planet, which 
would ultimately reduce uncertainties related to their consideration in 
comparative or diagnostic models. Furthermore, meaningful scientific 
insights, such as trend analyses, can only be robustly realized with 
standardized data processing applied to the extended satellite record. To 
that end, a well-vetted, publicly available satellite inland water data 
record would greatly reduce the efforts associated with algorithm 
development and performance assessment, while also providing a 
consistent data set to enable broad algorithm refinement as well as 
determination if an approach requires regional adjustments. 

The Cyanobacteria Assessment Network (CyAN) (Schaeffer et al., 
2015) is one effort to apply consistent remote sensing methods to opera-
tional monitoring of inland water bodies, primarily lakes and reservoirs. 
CyAN is a joint U.S. Environmental Protection Agency (EPA), National 
Aeronautics and Space Administration (NASA), National Oceanic and 
Atmospheric Administration (NOAA), and U.S. Geological Survey (USGS) 
effort with a goal to produce and distribute operational, low latency 
remotely sensed metrics of cyanobacteria dominated harmful algal blooms 
(cyanoHABs) presence across observable contiguous United States 
(CONUS) and Alaskan lakes. The European Space Agency (ESA) Medium 
Resolution Imaging Spectrometer (MERIS, 2002–2012) onboard Envisat 
and the two Ocean and Land Color Instruments (OLCI, 2016-present) 
onboard Sentinel-3A and -3B provide the source of CyAN satellite data 
records. These ocean color instruments provide global coverage every 2–3 
days at ~300 m resolution. As part of the CyAN effort, mission-long data 
records for MERIS and OLCI are processed and distributed for the full 
CONUS and Alaska by the NASA Ocean Biology Processing Group (OBPG; 
https://oceancolor.gsfc.nasa.gov) at Goddard Space Flight Center. 

These satellite data records have been recognized as a valuable tool 
to reduce public exposure to harmful events by guiding water quality 
sampling and beach closures in several states such as Utah, Wyoming, 
Oregon, and New Jersey (Schaeffer et al., 2018; WDEQ, 2019; OHA, 
2019; NJDEP, 2020). The utility of the CyAN data set has been further 
demonstrated in a number of studies that quantify diverse aspects of 
cyanobacteria blooms across CONUS including the bloom extent, fre-
quency and severity (Clark et al., 2017; Coffer et al., 2020; Mishra et al., 
2019; Urquhart et al., 2017). For example, motivated by a human health 
and drinking water supply concerns, Clark et al. (2017) used CyAN 
satellite data products to demonstrate the ability of remote sensing to 
assist with the allocation of limited management resources across 
diverse lakes and regions. Mishra et al. (2019) established a satellite- 
based method to quantify seasonal and annual bloom magnitudes for 
lakes to further support decision making and resource allocation. And, 
with the goal of quantifying the socioeconomic benefits of remote 
sensing, Stroming et al. (2020) evaluated the use of CyAN satellite data 
for monitoring toxic cyanobacteria events in Utah Lake, Utah, a popular 
recreational waterbody, and estimated that reduced illnesses and 
improved human health outcomes from such monitoring could result in 
$55,000 to > $1 million US$ in benefits per cyanobacteria event. Time 
series of satellite data have been utilized for a variety of inland water 
analyses to look the evolution of a single bloom event (Wynne et al., 
2008), as well as larger area trends on seasonal and annual timescales 
(Urquhart et al., 2017; Coffer et al., 2020). Using the data set presented 
here, Coffer et al. (2020) demonstrated that the CONUS bloom season 
reported in the CyAN satellite data is well-supported in the literature 
with blooms rising gradually starting late spring and reaching a 
maximum in late-summer/early-autumn. Mishra et al. (2021) showed 
the CyAN product had an 84% accuracy for bloom detection based on 
the ability to match state-reported toxin levels that indicated bloom or 
no-bloom conditions. 

The purpose of this paper is two-fold. First, we describe the pro-
duction and distribution of the MERIS lakes time-series, which we have 
made publicly available (https://oceancolor.gsfc.nasa.gov/pro 
jects/inlandwaters/). This inland waters data set (ILW) contains 10 
years (2002− 2012) of observations. ILW will be expanded to include 
OLCI on both Sentinel-3A (2016-present) and Sentinel-3B (2018-pre-
sent) as those data become available and are quality controlled (see 
Appendix B). By design, the distribution of ILW can substantially reduce 
the processing effort required by end users to work with the MERIS (and 
eventually OLCI) data for these inland bodies of water and, as such, we 
offer it as a standardized community resource for future lake and 
reservoir algorithm development and performance assessment. Second, 
to highlight the utility of ILW, we offer a case study of Chl algorithm 
development and performance assessment across CONUS, using the 
Cyanobacteria Index (CI) algorithm; the complete sequence of CI 
development is detailed in Coffer et al. (2020) and reviewed below. Our 
purpose in pursuing this case study is not to unequivocally recommend 
another Chl algorithm, as viable alternatives exist, all with their own 
strengths and weaknesses (Binding et al., 2011, 2013, 2019; Gower 
et al., 2005; Kutser, 2009; Lesht et al., 2013; Matthews et al., 2012; 
Matthews and Odermatt, 2015; Moses et al., 2012; Neil et al., 2019, to 
name only a few). Rather, we pursued this case study to provide a 
demonstration of how a unified approach, developed using a standard-
ized satellite data set, performs for a diverse set of lakes across the 
CONUS. A wide diversity of CyAN stakeholders, with varied experience 
and investment in satellite ocean color, use the daily and weekly im-
agery distributed by NASA. We believe that demonstrating the devel-
opment and assessment of Chl estimates through this case study may 
increase stakeholder accessibility, familiarity, use, and comfort with 
development and refinement of a derived biogeophysical variable. Our 
ultimate goal, however, remains creating awareness of ILW in the 
community. This data record is publicly available for use as-is to enable 
exploration of additional remote sensing algorithm development for U.S. 
lakes and inland waters. 
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2. Methods 

2.1. Satellite data processing 

Calibrated, geolocated top-of-atmosphere (Level-1B) MERIS data 
were acquired from the OBPG. The OBPG redistributes this data record 
through a data sharing agreement between NASA and ESA. The Level-1B 
data were processed to Level-2 imagery, which have the same projection 
and resolution as the Level-1 source data, by removing the contribution 
of spectral Rayleigh scattering from the top-of-atmosphere signal. This 
Rayleigh-corrected top-of-atmosphere reflectance (ρs(λ); unitless) was 
generated at 413, 443, 490, 510, 560, 620, 665, 681, 709, 754, and 885 
nm. ILW includes both ρs(λ) and CIcyano, discussed in detail below. The 
spectral remote sensing reflectances Rrs(λ) are not provided, as it has 
been previously demonstrated that the standard OBPG atmospheric 
correction algorithm underperforms for many inland water bodies (see, 
e.g., Pahlevan et al., 2017; Warren et al., 2019). 

Several processing masks were applied to exclude questionable 
Level-2 data. An inland waters specific cloud flag was adopted, as the 
default OBPG ocean processing cloud flag is occasionally triggered by 
highly reflective waters from blooms or suspended sediments (Wynne 
et al., 2018). For CONUS, a high resolution (~60 m) land mask based on 
the NASA Shuttle Radar Topography Mission Water Body Data Shape-
files (NASA JPL, 2013) was used, with modifications by Urquhart (2018) 
to correct for embedded inaccuracies in that data set, such as missing 
lakes and reservoirs in Rhode Island and Massachusetts. As this is a static 
land mask, a flag for mixed land-water pixels was developed to identify 
cases where the land mask reported a water pixel, but that pixel did not 
contain water at the time of satellite observation, which is possible due 
to the ephemeral spatial extents of inland waters. Finally, flags to indi-
cate potential contamination due to adjacency effects and to identify 
snow or ice covered water bodies were also applied (Wynne et al., 2018). 

CIcyano was calculated from ρs(λ) after masking (Eq. (1)). This de-
rivative spectral shape, or line-height, algorithm was selected by the 
CyAN Project to provide cyanoHAB detection. Through a baseline sub-
traction that effectively normalizes the absolute signal, line-height al-
gorithms evaluate derivative spectral shape (curvature) in targeted 
spectral regions – in this case, Chl and phycobilin absorption. Line- 
height algorithms tend to be less sensitive to atmospheric conditions 
and satellite instrument calibration and data processing artifacts relative 
to alternative spectral matching and band ratio approaches for Chl 
estimation (Hu et al., 2019). Examples of other common line-height 
algorithms applied to inland waters include the Maximum Chlorophyll 
Index (MCI) (Binding et al., 2011, 2013, 2019; Lesht et al., 2013) and the 
maximum peak height (MPH) (Matthews et al., 2012; Matthews and 
Odermatt, 2015). 

The CyAN implementation of CI proceeds as follows. First, derivative 
spectral shapes (SS) around 665 and 681 nm are calculated via: 

SS(λ) = ρs(λ) − ρs(λ
− ) + [ρs(λ

− ) − ρs(λ
+) ]

(
λ − λ−

λ+ − λ−

)

, (1) 

where the superscripts – and +indicate one sensor waveband less and 
more, respectively, than the target sensor waveband. The λ− , λ, and λ+

for MERIS -SS(681) encompasses sensor wavebands 665, 681, and 709 
nm, while SS(665) incorporates 620, 665, and 681 nm (Lunetta et al., 
2015). These SS are then used in a decision tree to identify cyanoHAB 
presence. The original implementation defined CI = -SS(681), with a 
positive CI defined as cyanoHAB presence, following the assumption 
that cyanobacteria are likely present when ρs(681) falls below its base-
line value, which results from a combination of insignificant fluores-
cence and strong chlorophyll absorption from cyanobacteria at 681 nm 
(Seppälä et al., 2007; Wynne et al., 2008; Binding et al., 2011). Use of SS 
(681) alone, however, occasionally misidentifies other non- 
cyanobacteria phytoplankton blooms as cyanoHABs and, furthermore, 
cannot ubiquitously provide robust estimates of non-cyanobacteria 

biomass (Matthews et al., 2012; Wynne et al., 2010, 2013). As such, 
CI was augmented to also consider SS(665) to provide an additional 
metric for constraining CyAN estimates to cyanobacteria biomass. A 
spectral shape centered on 665 was used to identify presence of 
phycocyanin that would separate cyanobacteria from other blooms 
(Lunetta et al., 2015). This approach was also used by Matthews et al. 
(2012) for detecting cyanobacteria in African lakes. A positive SS(665) 
further indicates cyanoHAB presence, following the assumption that 
phycocyanin absorption depresses ρs(620) and alters the curvature 
around 665 nm. The sign of SS(665) can be used to assign the derived CI 
value as either CIcyano or CInoncyano, with the subscripts indicating the 
presence of cyanobacteria or not, respectively. ILW only includes 
CIcyano, as the priority of CyAN is cyanoHAB detection, noting that CI 
and CInoncyano can be easily determined using the provided ρs(λ) (Eq. 
(1)). Wynne et al. (2018) provides additional details on the CyAN suite 
of products, as well as quality assurance metrics and additional exclu-
sion criteria applied. 

As the final ILW processing step, Level-3 composites of ρs(λ) and 
CIcyano for CONUS were generated from the Level-2 imagery using the 
OBPG's standard software and processes. This involved generation of 
Level-3 bin files covering CONUS using an integerized sinusoidal pro-
jection (Campbell et al., 1995), followed by production of Level-3 
Standard Mapped Images (SMI) using a Plate Carrée projection and 
nearest neighbor weighting with a 300 m bin size with the bins for the 
ρs(λ) and CIcyano products based on where the maximum CIcyano value is 
found. Daily imagery was produced for all products for all locations with 
valid satellite retrievals. The ρs(λ) and CIcyano products were further 
temporally composited as mean values over 7-day (centered on 
Wednesday), monthly, rolling 28-day, and seasonal ranges. Monthly and 
seasonal climatologies were also generated. ILW SMIs are provided as 
complete CONUS and Alaska maps stored as netCDF files, which provide 
flexibility for a wide range of potential end users. To further ensure 
accommodation of all potential end users, Appendix C provides details 
and recipes for reprojecting the SMI imagery into alternate map pro-
jections (e.g., Albers conic projection, which is used in operational CyAN 
processing), as well as for extracting regional spatial subsets and saving 
the imagery in alternate file formats (e.g., GeoTIFF). All data are publicly 
available via the NASA OceanColorWeb site (https://oceancolor.gsfc.na 
sa.gov/projects/inlandwaters/). Furthermore, all source code are 
available through the distribution of SeaDAS. 

2.2. In situ data 

In situ Chl measurements based on discrete water samples from the 
Water Quality Portal (https://www.waterqualitydata.us) were acquired 
from the USGS CyAN Field Integrated Exploratory Lakes Database 
(Eslick et al., 2019). The in situ data were for CONUS only. The initial 
search for Chl data from 2002 to 2012 resulted in 547,783 measure-
ments. After filtering these data using the criteria described below, the 
sample size reduced by 67%, leaving a final count of 148,018 mea-
surements for use in this study. Data filtering used the following steps: 
(1) samples collected at >0.5 m depth were discarded, as were those 
lacking a reported depth value, to ensure that only near-surface samples 
were considered; (2) negative Chl values and extremely high values (>
2000 μg L− 1) were discarded, as they are extreme outliers for this data 
set, as well as outside the range for meaningful satellite detection; (3) 
samples with different reported start and end dates were removed, as it 
was impossible to ascertain the actual collection time; (4) only sample 
types labeled “Sample-Routine,” “Field Msr/Obs,” or “Sample,” were 
retained, as other sample type designations indicate measurements for 
laboratory quality control that are not appropriate for validation; and 
(5) replicate samples with identical dates, times, locations and depths 
were removed. The linear distance from an in situ sampling station to the 
nearest shore was estimated from each sample's coordinates using a 
revised version of the National Hydrography Dataset Plus lakes shapefile 
(NHDPlus v2.0 polygons; U.S. Geological Survey, 2012). Only samples 
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collected >300 m from shore were retained to minimize potential in-
clusion of land-water pixels or those contaminated by adjacency effects 
or bottom reflectance in optically shallow water. 

2.3. Chl algorithm case study 

It has long been established that the NIR region of the spectrum has a 
meaningful relationship with Chl concentration (Gitelson, 1992). Tom-
linson et al. (2016) demonstrated the use of CI to estimate Chl in high 
chlorophyll lakes in Florida. Here, we extend this effort to explore the 
use of CIcyano to estimate Chl across the CONUS. The Tomlinson et al. 
(2016) formulation is: 

ChlT16 = 4050(± 271)×CI + 20(± 3) (2) 

Their training data set focused on cyanobacteria dominated lakes 
and included remote sensing reflectances from above water radiometers 
for the calculation of CI and in situ Chl measurements ranging from 
eutrophic to hypereutrophic conditions (16 to 115 μg L− 1). Tomlinson 
et al. (2016) reported a bias of 3 μg L− 1 and a root mean square error 
(RMSE) of 15 μg L− 1 for ChlT16 with a relative RMSE of 27%. They 
calculated CI (not CIcyano), but as these Florida lakes were 
cyanobacteria-dominated their CI is expected to be comparable to the 
CIcyano used throughout this paper. 

Our in situ data set spans oligotrophic to hyper-eutrophic conditions 
(0.003 to 750 μg L− 1), which presents an opportunity to re-tune a CI to 
Chl algorithm to a wider range of conditions more representative of 
CONUS lakes. Our re-tuning considered MERIS-derived CIcyano and in 
situ Chl. This required accumulating satellite-to-in situ match-ups. We 
acquired Level-3 MERIS-to-in situ match-ups from the OBPG following 
the methods of Scott and Werdell (2019). Briefly, this involved 
retrieving Level-3 daily SMIs from ILW, where a valid satellite pixel 
matched an in situ target on the same day the in situ sample was 
collected. This resulted in 1738 MERIS-to-in situ match-ups available for 
final analyses (Fig. 3). 

A bootstrapping approach was used to relate the paired MERIS 
CIcyano with in situ Chl following Eq. (2). Bootstrapping creates a series of 
data sets via random sampling from and replacement to a larger, original 
data set (Efron, 1979). Bootstrapping assumes the full data set represents 
the population of interest and follows an iterative sampling-with- 
replacement strategy, where data selected for a sub-sampled data set 
are returned to the original full data set for potential reuse in a subse-
quent sub-sampled data set. A variety of bootstrapping approaches exist, 
and selection of method requires consideration of data set characteristics 
such as sample size and distribution (Efron and Tibshirani, 1997; 
Davison and Hinkley, 1997; Fox, 2002; Bi et al., 2021). For the boot-
strapping used in this analysis, the 1738 satellite-to-in situ match-ups 
were split into two data sets – a training data set consisting of 80% of 
the match-ups and an evaluation data set consisting of the remaining 
20% (Fig. 3). The bootstrapping sample-with-replacement method was 
applied to the training data set for 1500 iterations (Python with Scikit- 
learn, a machine learning library). In each iteration, a regression anal-
ysis was executed to estimate the algorithm coefficients (Eq. (2)). 
Analysis of the full suite of runs allowed derivation of average co-
efficients and their 95% confidence intervals. The performance of the 
newly tuned bootstrapped chl algorithm, ChlBS, was assessed with the 
evaluation data set (the isolated 20%). In the context of algorithm 
development, this process of resampling and exposing the algorithm to 
fits from multiple data sets offers advantages relative to a single linear 
regression fit on the full data set. It not only reduces the risk of over-
fitting to one particular data set, but also allows production of confi-
dence intervals around the coefficients. 

2.4. Performance assessment 

Ocean color algorithms are often validated using least squares re-
gressions and analysis of their errors (e.g., Werdell and Bailey, 2005). 

Our satellite-to-in situ data set is not normally distributed (Fig. 4). 
Therefore, mean square error statistics were not reported, as they are 
best suited for Gaussian distributions. Instead, we focus on mean bias 
and mean absolute error (MAE)to summarize algorithm performance 
(Seegers et al., 2018): 

Biaslog = 10̂

(∑n

i=1
log10(Mi)− log10(Oi)

n

)

(3)  

MAElog = 10̂
(∑n

i=1|log10(Mi) − log10(Oi) |

n

)

(4) 

where M, O, and n represent the modeled satellite value, the in situ 
observation, and the sample size, respectively. Log-transformed metrics 
were used (Eqs. (3) and (4)), because error for Chl is heteroskedastic and 
the data ranges four orders of magnitude, which is common in the 
validation field (Seegers et al., 2018). Also, the log approach helps 
minimize analytical biases and the influence of outliers (Tofallis, 2015). 
The metrics, as shown, are based on geometric mean, converted from log 
units and are dimensionless. Their interpretation is roughly multiplica-
tive, meaning that a biaslog of 1.3 indicates that the model is 1.3× (30%) 
greater on average than the observed variable, while a bias less than 
unity indicates a negative bias. MAElog always exceeds unity, such that a 
MAE of 1.2 indicates relative measurement error of 20% in either di-
rection. While the term “error” is used here as it is in the vast majority of 
validation studies, it is acknowledged that all are actually referring to 
“misfit”, because the reference data also have observation errors and 
therefore the actual error is not quantifiable (Lynch, 2009). 

In the context of water quality monitoring, many stakeholders are 
additionally interested in broadly categorizing performance to simply 
determine “is there a problem?” and, if yes, “how bad is it?” (IOCS, 
2015). Thus, performance was additionally assessed by quantifying the 
frequency for which the satellite retrieval properly identified the trophic 
category into which each corresponding in situ data point belonged. To 
do so, the in situ value was used to divide the match-up data set into four 
trophic categories based on criteria from the National Lakes Assessment: 
oligotrophic/mesotrophic (0–7 μg L− 1), eutrophic (7–30 μg L− 1), and 
two hypereutrophic conditions (>30 μg L− 1) (U.S. Environmental Pro-
tection Agency, 2009). Because of its large range (30–650 μg L− 1), the 
hypereutrophic category was further divided into “low hypereutropic” 
(30–90 μg L− 1) and “high hypereutrophic (>90 μg L− 1). High hyper-
eutrophic conditions (>90 μg L− 1) fall in the top 25% of data points in 
terms of Chl concentration in both the training and evalutation data sets. 
A confusion matrix was generated to report percentages of correct tro-
phic level characterization by ChlBS. Generally, a confusion matrix is a 
visual display of an algorithm's ability to properly predict categories. 

3. Results 

3.1. The composition of ILW 

ILW provides data across CONUS for over 2300 resolvable lakes with 
sizes greater than three 300 m pixels (Urquhart and Schaeffer, 2019; 
Coffer et al., 2020) and 15,450 waterbodies with sizes of at least one 
300 m pixel (Clark et al., 2017) and 5874 lakes of at least one pixel size 
in Alaska (Fig. 1). ILW currently consists of L2 files, L3-binned files, and 
L3 SMIs spanning 28 April 2002 to 9 April 2012, representing the 
mission life of MERIS. The total file volume for this first version of ILW is 
greater than 20 TB with 16 TB of L2 ρs(λ) data. The remaining 4 TB are 
L3-mapped and L3-binned files which provide 3600 daily files, plus 527 
files for both weekly and rolling 28-day files, 120 monthly files and 48 
seasonal files. Occassionally, ILW will be reprocessed, so the exact file 
numbers will change and version numbers will be given to updated 
versions. Additionally, OLCI will be added to the ILW data set, which 
will greatly expand the time series. 

Lakes can have wide-ranging MERIS ρs(λ) spectra. Lake Winnebago, 
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Wisconsin and Utah Lake, Utah are from ecologically distinct regions of 
the USA, the upper Great Lakes Region and the Southwest, respectively. 
These lakes were selected for closer illustration of how the varied line 
heights relate to a dynamic range of CIcyano retrievals as well as to 
provide examples of MERIS imagery and ChlBS retrievals (Fig. 2). Level-3 
Standard Mapped Images (SMI) from ILW were obtained for September 
10, 2011, showcasing cloud-free scenes for Lake Winnebago, WI and 
Utah Lake, UT. Appendix B demonstrates the same products displayed 
for OLCI on Sentinel-3A and Sentinel-3B. The selected lakes exhibit 
divergent ρs(λ) spectra, yet the line height algorithms allow for mean-
ingful interpretation of the data across the waterbodies as demonstrated 
in mapped imagery for both the CI and ChlBS algorithms (Fig. 2). The 
variations in spectral shape were highlighted by normalizing each ρs 
spectrum by its integrated value [ρs(λ) / 

∫
ρs]. The integration was 

calculated over the 400–754 nm range using the trapezoidal rule. 

3.2. The Chl algorithm development data set 

The final filtered ILW CIcyano-to-in situ Chl match-up data set 
(https://oceancolor.gsfc.nasa.gov/fileshare/jeremy_werdell/CyAN_Ch 
lBS/) included 1738 match-ups from 15 states across CONUS (Minne-
sota: 1263; Oregon: 291; Florida: 98; North Dakota: 51; Texas: 5; 
Nevada: 4; Nebraska, North Carolina, South Carolina, Wisconsin: 3; 
Idaho, Michigan, Utah:2; Kansas, Virginia: 1) (Fig. 3). The majority of 
the match-ups occurred in Minnesota (72%) and Oregon (17%), while 
the remaining 13 states made up 10% of the data (Fig. 3). Ideally, the 
match-ups would be more evenly spread across the country, however, 
Minnesota has more satellite resolvable lakes than any other state, with 
17.5% of all CONUS resolvable lakes located in that state (Schaeffer 
et al., 2018). Minnesota also provided one of the larger volumes of in situ 
data, making satellite matches more probable. Fortunately, Minnesota 
has diverse lakes with in situ Chl concentrations included in this analysis 
ranging from 0.51 to 650 μg L− 1. Additionally, the region includes 
farmland, urban systems, and forested watersheds providing varied 
aquatic systems for algorithm testing. The full match-up data set 
included in situ measurements across water types from oligotrophic to 
hypereutrophic, with Chl ranging from 0.5 to 832 μg L− 1, a mean con-
centration of 71.2 μg L− 1, and a median concentration of 45 μg L− 1. The 
vast majority (79%) of these match-ups included in situ values with Chl 
< 100 μg L− 1 (Fig. 4). The summer and autumn seasons have the highest 
frequency of match-ups with 96% occurring between May and October 
and 56% falling into the two months of August and September (Fig. 5). 

3.3. Performance of ChlT16 

When applied to the evaluation satellite-to-in situ data set assembled 
in this study (20% of all available data), ChlT16 reported a positive biaslog 
of 1.33 (33%) and MAElog of 1.8 (80%), (Fig. 6, Table 1). Only the 
evaluation data set was considered here, for consistency with ChlBS 
analysis. It is clear from Fig. 6 that ChlT16, which was developed pri-
marily for hypereutrophic lakes in Florida, provides meaningful Chl 
retrievals when the analysis focuses only on high chlorophyll conditions 
(>20 μg L− 1), with the biaslog dropping to 1.01 (1%) and MAElog 
dropping to 1.48 (48%, Table 1) for this range. For the eutrophic cate-
gory, ChlT16 reported a positive biaslog and MAElog of 2.23 (123%) and 
2.2 (120%), respectively. Performances in both hypereutrophic cate-
gories exceeded that of the eutrophic category. The low hypereutrophic 
category reported a reduction of biaslog to 1.16 (16%) and MAElog to 1.3 
(30%). A tendency to underestimate Chl in the high hypereutrophic 
category yielded a negative biaslog of 0.60 (− 40%) and MAElog of 1.7 
(70%). 

The large MAElog and biaslog in the oligotrophic range is unsurprising 
as Tomlinson et al. (2016) reported a minimum detection level of ~20 
μg L− 1 for ChlT16. Their intercept reflects the inherent eutrophic nature 
of these lakes, as well as a potential background concentration of Chl 
from other (non-cyano) phytoplankton that may be as much as 20 μg 

L− 1. Their approach, therefore, does not accurately assess low concen-
trations and should not be applied under these conditions, which ex-
plains why eliminating the lowest Chl concentration locations led to 
improved performance. 

3.4. Development and performance of ChlBS 

The bootstrapping training data subsets, consisting of 1390 data 
points (80% of the full data set), were run through 1500 bootstrapping 
iterations (Fig. 7A), resulting in the following relationship: 

ChlBS = 6620(± 646)×CIcyano − 3.1(± 5.2) (6) 

While the intercept is negative, we note that its standard deviation is 
larger than its value, indicating that the intercept is not meaningfully 
different than zero. That said, we would advise caution when consid-
ering ChlBS retrievals that approach null to avoid biases. While admit-
tedly imperfect to do so, we considered removal of all negative ChlBS 
retrievals in our subsequent analyses. For these data, however, no 
negative values were reported and, therefore, no match-ups were 
removed from consideration. 

The performance of ChlBS was assessed using the evaluation data set, 
consisting of 348 data points (20% of the full data set). ChlBS reported a 
slight positive biaslog of 1.11 (11%) and MAElog of 1.6 (60%), both of 
which improve upon the performance of ChlT16 (Table 1; Fig. 7B). The 
improved performance of ChlBS relative to ChlT16 was anticipated, as it 
was trained from a larger data set over a wide range of data values. The 
removal of data points < 20 μg L− 1 improved the biaslog with a slight 
reduction to 1.04 (4%) and the MAElog improved to 1.52 (52%) 
(Table 1). The poorest performance was seen in the oligotrophic/ 
mesotrophic range with a biaslog of 1.79 (79%) and a MAElog of 2.8 
(180%). Performance in the eutrophic range gave a biaslog of 1.27 (27%) 
and a MAElog of 1.8 (80%). ChlBS yielded the lowest MAElog of 1.4 (40%) 
in the low hypereutrophic range with a positive bias of 1.19 (19%). The 
tendency to underestimate in the high hypereutrophic range resulted in 
a negative bias of 0.73 (− 27%) and a MAElog of 1.5 (50%). When 
considering the full range of data ChlBS was an improvement over ChlT16 
with a reduction in both biaslog and MAElog. However, the improvements 
were not uniformly seen across all the concentrations. For example, in 
the 20–700 μg L− 1 range and the low hypereutrophic range ChlBS and 
ChlT16 performed similarly. 

The bootstrapping approach resulted in a spread of potential curve 
fits (Fig. 7A) allowing for the calculation of coefficient confidence in-
tervals. Following, the 95% confidence intervals for the ChlBS co-
efficients were determined (Eq. (6)). The evaluation data set was plotted 
using lines to indicate the spread of predicted Chl values that would 
result from using the full range of coefficients defined by the 95% con-
fidence intervals (Fig. 7C,D). Clearly, the spread grows with increasing 
predicted Chl concentrations reflecting the increasing uncertainty. 
Relatively small confidence intervals, compared to the coefficient, 
indicate a strong algorithm fit, while larger confidence intervals imply a 
weaker relationship. As Fig. 7A shows there is more spread in the curve 
fit at the high end where there are far fewer data points. If there was a 
desire for a tighter fit, more data at the high end could be useful. 

A summary of the ability of ChlBS to assess four broad categories of 
trophic status, specifically, oligotrophic/mesotrophic, eutrophic, low 
hypereutrophic, and high hypereutrophic, is also presented in the form 
of a confusion matrix (Fig. 8). The algorithm minimum detection limit is 
an improvement over ChlT16 minimum detection level, but nonetheless 
ChlBS still results in an overestimation of Chl in low concentrations. In 
the 0–7 μg L− 1 range ChlBS properly assigned the category in 55% of 
cases and overestimated 45% of the time. The ChlBS best performance is 
in the eutrophic range correctly predicting the trophic state in 72% of 
cases, overestimating 8% of cases oligotrophic/mesotrophic cases that 
were miscategorized as eutrophic, and underestimating 21% of hyper-
eutrophic cases categorized as eutrophic (Fig. 8). The breakdown for the 
low hypereutrophic (30–90 μg L− 1) range shows that low 
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hypereutrophic cases were identified correctly 61% of the time, while 
overestimation resulted in lower Chl cases being miscategorized into the 
low hypereutrophic category 25% of the time of which 23% were 
eutrophic cases and 2% were in the oligotrophic/mesotrophic range. 
Underestimation led to 14% of cases being miscategorized as low 
hypereutrophic rather than high hypereutrophic. The ChlBS in high 
hypereutrophic range correctly predicted 59% of samples, while 40% 
were overestimated and categorized as high hypereutrophic rather than 
low hypereutrophic (Fig. 8). When all hypereutrophic waters, that is, all 
cases >30 μg L− 1, were analyzed together, then 85% (215 out of 254) of 
the ChlBS trophic category matched the in situ measurement. Overall, 
ChlBS showed promise at trophic status identification. 

4. Discussion 

Our primary motivation for this work was creating awareness that 
the CyAN Project developed and is distributing the mission-long MERIS 
time-series of CONUS and Alaska lakes data, inclusive of core radio-
metric products and the CIcyano optical data product. Similar time-series 
from OLCI on both Sentinel-3A and -3B will be developed and distrib-
uted when data are properly quality controlled, possibly by the time of 
publication of this work (https://oceancolor.gsfc.nasa.gov/projects/inla 

Fig. 2. A comparison of 10 September 2011 satellite data from two different lakes in different U.S. regions; Lake Winnebago, Wisconsin (top; A-F) and Utah Lake, 
Utah (bottom; G-L) showing mapped satellite images of ρs (665, 681, 709 nm; A-C, G-I), CIcyano (D,J) and ChlBS (E,K) and ρs(λ) spectra (F,L). The maps of each lake's CI 
values and corresponding ChlBS demonstrate different water types present (D,E,J,K). For each lake the median MERIS ρs(λ) spectra are shown for pixels in discrete Chl 
ranges with colors representing diverse water types based on discretized ranges of /Chl values (F,L). To focus on the variations in spectral shape, and not spectral 
amplitude, each ρs spectrum was normalized by its integrated value [ρs(λ) / 

∫
ρs] over the range of 400–754 nm. These spectra are included as part of the ILW suite. 

The circles along the lines mark the center wavelength of measured satellite bands (F,L). 

Fig. 3. CONUS match-up locations. The light grey circles represent a single sample and black represents ≥3 samples at a location. 15 states have at least one sampling 
location. The inset map shows match-up locations in Minnesota, which is the location for 72% of the match-up results. The yellow indicates the location of a sample 
that was part of the 20% of samples used for evaluating the ChlBS algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 4. Data distribution of the 1738 in situ values from the match-up results.  

Fig. 5. The monthly distribution of the 1738 in situ and satellite match-up re-
sults. 95% of all match-ups occurred between May and October. 
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ndwaters/). Given growing interest in satellite-based water quality 
monitoring, straightforward access to such data has become increasingly 
critical to support the emerging cohorts of new end-users and stake-
holders. The distribution of this standardized and consolidated data set 
offers two substantial contributions to the water-quality monitoring 
communities. First, MERIS radiometric data for CONUS and Alaska have 
been processed to Level-2, projected onto a Plate Carrée Level-3300-m 
grid, and included in this distribution. To our knowledge, such a data 
set has not been previously compiled in such a manner. This allows al-
gorithm developers motivated to pursue alternative methods to relate 
principle ocean color remote-sensing radiometric variables to any inland 
water biogeophysical data product of interest. We envision this radio-
metric data set could be used to evaluate existing inland remote sensing 
approaches, to enable new performance assessments as additional in situ 
data become available, and to support regional tunings and 

reparameterizations. Fig. 2 shows divergent ρs spectra across water 
types, demonstrating that radiometric distinction is possible and gives 
reason for optimism in the utility of this data set for inland waters. 
Although Lake Winnebago and Utah Lake show varied spectra, the 
utility of the satellite data to be able to map meaningful biophysical 
variables of concern such as chlorophyll concentrations and potentially 
dangerous harmful algal blooms was demonstrated. The spatial distri-
bution of phytoplankton could provide meaningful information for 
water managers concerned about human or ecosystem health. This 
demonstrates the power of satellite data for inland water use and creates 
awareness of its untapped potential to further develop approaches and 
algorithms for regional to global applications. Previously, processed 
satellite data were not easily available for inland waters and perhaps the 
most useful aspect of this contribution is that this data set removes much 
of the burden of satellite data processing for end-users and stakeholders. 

Our secondary motivation was to explore the viability of using a 
single algorithm to estimate a biogeophysical variable across the 
spatially and temporally diverse CONUS data record. We explored using 
the readily available CyAN optical metrics of cyanobacteria presence 
(CIcyano) as a rudimentary estimate of chlorophyll biomass (ChlBS). This 
serves end-users with interest in the CyAN Project's core biogeophysical 
deliverables and offers a performance assessment of their quality and 
utility across a spatially and temporally diverse data set. Perhaps more 
importantly, it also provides less familiar end-users a roadmap for using 
ILW in algorithm development, while demonstrating the challenge of 
universally relating an optical property to a biological or biogeochem-
ical one. Acknowledging, of course, the need for many end-users and 
stakeholders to operate and communicate using biogeophysical vari-
ables in lieu of optical variables. A line-height calculation stemming 
directly from measurements of reflectance, CIcyano is expected to be, in 
principle, universally applicable (assuming adequate consideration of 
Rayleigh calculations, mixed land-water pixels, clouds, snow/ice, and 
adjacency effects). Its relationship to any biogeophysical condition, 
however, requires conscientious consideration. Given here was a 
demonstration of methods and pitfalls to avoid that should provide a 
useful roadmap and foundation with which to support an emerging 
cohort of end-users. 

Regionally, Chl derived from CI has been shown to be meaningful 
(Tomlinson et al., 2016). Arising from the high Chl conditions from 
which it was developed, ChlT16 has an intercept of 20 μg L− 1. ChlT16 is 
based on local above water radiometry from Florida eutrophic and 
hypereutrophic lakes with data collected in one summer, thereby 

Fig. 6. Comparison of in situ Chl versus ChlT16 retrievals (Tomlinson et al., 
2016). The shading indicates the data density with dark colors being more data 
points compared to the lightly shaded markers. 

Table 1 
ChlT16 and ChlBS summary statistics (Biaslog and MAElog in μg L− 1) for total performance across 6 data ranges determined by in situ Chl concentrations 
using the evaluation data set (20% of the total data set). ChlT16 was developed for hypereutrophic lakes and is most appropriate for high Chl (>20 μg 
L− 1) conditions; therefore, the 20–700 μg L− 1 range results are shown.  

Chl Concentration 
(μg L− 1) 

Statistics ChlT16 

(Tomlinson et al., 2016) 
ChlBS 

Chl = 4050(±271) * CICyano + 20 (±3) Chl = 6620(±646) * CICyano − 3.07(±5) 

0–700 N 348 348 
Biaslog 1.33 1.11 
MAElog 1.8 1.6 

20–700 N 270 270 
Biaslog 1.01 1.04 
MAElog 1.48 1.52 

Oligotrophic/ Mesotrophic 
0–7 

N 19 19 
Biaslog 8.2 1.79 
MAElog 8.2 2.8 

Eutrophic 
7–30 

N 94 94 
Biaslog 2.23 1.27 
MAElog 2.2 1.8 

Hypereutrophic 
30–90 

N 145 145 
Biaslog 1.16 1.19 
MAElog 1.3 1.4 

High Hypereutrophic 
>90 

N 82 82 
Biaslog 0.60 0.73 
MAElog 1.7 1.5  
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covering a narrow set of conditions. The intercept is likely an offset from 
the background chlorophyll not associated with cyanobacteria, which is 
unlikely in most lakes, although relevant to certain hypereutrophic 
Florida lakes. This offset has been adjusted for other high Chl regional 
applications including to 10 μg L− 1in Lake Erie (Rowe et al., 2016) 
demonstrating the utility of regional tuning. It is encouraging that the 
ChlBS slope coefficient of 6620 is the range of the more regional specific 
tuned ChlT16 slope of 4050 giving confidence in the CIcyano to Chl rela-
tionship. Other studies have also successfully demonstrated the re-
lationships of line-heights to biogeophysical variables, primarily on a 
regional basis (Binding et al., 2011, 2019; Lesht et al., 2013; Matthews 
et al., 2012; Matthews and Odermatt, 2015). We explored the robustness 
of a universal CONUS application, which served to demonstrate how 
well a single algorithm can perform across spatially and optically diverse 
and complex waters. While both ChlT16 and ChlBS provide valuable in-
formation, their performance assessments show room for improvement 
and reiterate the need for additional development of inland water al-
gorithms to expand the accuracy and applications of satellite remote 
sensing in these systems. Distribution of the ILW data set can support 
such efforts. For many end-user applications, ChlBS performance may be 
perfectly adequate for early warning detection or trend detection, not 

Fig. 7. (A) Bootstrap results for 1500 iterations of the CIcyano training data set. The red line is the mean fit and the grey shows the spread of fits. The color shading 
indicates data density with light grey representing fewer data points compared to black indicating high data density. (B) Predicted ChlBS versus evaluation data set in 
situ Chl concentrations with log-transformed axes. The grey to black shading is an indication of data density from low to high. (C) Results from panel B in normal 
space in the range 0–650 μg L− 1). The bars indicate the potential uncertainty range for each predicted data point based on the ChlBS coefficients' 95% confidence 
intervals. (D) Exploded view of the data from the box in the lower left of panel C allowing easier viewing of the high density, low Chl (0–90 μg L− 1) data. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Confusion matrix percentages to illustrate the frequency of which the 
algorithm, ChlBS, predicts the trophic status of the in situ sample placed into 4 
broad categories of oligotrophic/mesotrophic (0–7 μg L− 1), eutrophic (7–30 μg 
L− 1), low hypereutrophic (30–90 μg L− 1), and high hypereutrophic (> 90 
μg L− 1). 
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unlike the previous studies that used CIcyano cyanobacteria estimates 
(Clark et al., 2017; Urquhart et al., 2017; Mishra et al., 2019; Coffer 
et al., 2020). For other applications, regional reparameterizations or 
alternative approaches may be most prudent. Neil et al. (2019) reviewed 
19 Chl algorithm and 48 approaches to applying the algorithms for 13 
different water types and proposed that an adaptive framework leads to 
overall improvement of estimates. However, this dynamic method of 
algorithm selection, while potentially more precise, may not be ideal for 
users who only require a simplified approach for broad water quality 
monitoring and response. Again, our case study serves to provide a 
recipe for simple algorithm development for a stakeholders who wish to 
generate an alternative CIcyano-to-biogeophysical variable relationship. 

Generally speaking ChlBS showed utility in estimating chlorophyll 
concentrations across CONUS lakes (Table 1). Our results support the 
Matthews et al. (2012) finding that such algorithms are suitable for 
trophic status assessment and appropriate for providing some warning 
signs for harmful algal bloom (HAB) events. However, there remains 
uncertainty about the precise retrieved quantity of Chl and, therefore, 
analyses that require constraining small changes may not yet be able to 
consider satellite retrievals. The ChlBS algorithm tended to perform best 
in the >7 μg L− 1 range, while underperforming at the lowest chlorophyll 
concentrations (oligotrophic-mesotrophic, Table 1). The reduction in 
performance in the low end could be caused by a number of variables. 
First, the ρs(λ) signal in the NIR must overcome the absorption of pure 
water in that range. The CIcyano 709 nm peak and the associated negative 
681 nm curvature result from cyanobacteria scattering, chl-a absorption 
and limited cyanobacteria fluorescence compared to other phyto-
plankton in the 665 to 709 nm range and at low cyanobacteria con-
centrations the signal may not be strong enough for 681 nm spectral 
shape to develop (Gower et al., 1999; Wynne et al., 2008). Furthermore, 
at very low signal levels, satellite instrument performance (e.g., signal- 
to-noise characteristics) in the NIR could confound meaningful re-
trievals. Ultimately, the reduced performance in the low concentration 
range limits confidence in assessments of modest changes in water 
quality in low Chl waters. Such limits in the low Chl range are not unique 
to ChlBS and have been previously reported as common for chlorophyll 
algorithms using red and near-infrared radiometric measurements (e.g. 
Binding et al., 2013; Gilerson et al., 2010; Moses et al., 2012; Palmer 
et al., 2015). Neil et al. (2019) also acknowledged the limitations of red/ 
near-infrared Chl algorithms at low concentrations and suggested a 
switching approach using a blue-green band ratio algorithm (e.g., 
O'Reilly and Werdell, 2019) in oligotrophic systems and a red/NIR 
method in systems with concentrations spanning 3–155 μg L− 1. Gilerson 
et al. (2010) observed that Chl algorithms using the red/NIR portion of 
the spectrum outperform blue-green band ratio algorithms at concen-
trations greater than 5 μg L− 1. Binding et al. (2019) also found that the 
MCI and CI worked better than band-ratio approaches for Chl > 10 μg 
L− 1. Additionally, ChlBS tends to underestimate the highest concentra-
tions (>90 μg L− 1) (Table 1). This is also consistent with Neil et al. 
(2019), which suggested alternative approaches at high concentrations 
>155 μg L− 1. Ultimately, we propose that end-users interested in the 
trophic state of a lake can use ChlBS to provide a functional state of the 
lake from the eutrophic to hypereutrophic range (Fig. 8) and, therefore, 
if nothing else, ChlBS retrievals provide an appropriate screening tool in 
familiar biogeophysical units. 

Although coincident satellite-to-in situ match-ups analysis is the most 
common form of validation there are known challenges and sources of 
uncertainty associated with this approach (e.g., Werdell and Bailey, 
2005; Zheng and Di Giacomo, 2017; Neil et al., 2019). First, there is the 
issue of a single in situ sample representing an entire pixel (in our case, 
300 m) that may or may not be homogenous. The potential intrapixel 
heterogeneity creates uncertainty about how well the in situ sample 
represents the mean across the larger pixel. And, as previously stated, 
multiple measurement techniques are often employed, all with their 
own uncertainties. Efforts to estimate the error associated with Chl 
laboratory techniques have found in situ sampling methods have an 

average error of 39%, and as high as 68% (Trees et al., 1985; Gregor and 
Maršálek, 2004). This is in the same range of the ChlBS MAElog of 1.6. 
Ideally, algorithm analysis would include an assessement of the un-
certainties in field measurements as well. Unfortunately, the in situ data 
used in this study do not include uncertainty estimates, nor information 
on systematic, or directional, biases. Therefore, it is not possible to fully 
assess what amount of uncertainty results from the in situ data versus the 
algorithm itself.Another source of error for algorithms can be tied to 
diverse phytoplankton communities. Binding et al. (2019) found MCI 
and CI tended to underestimate Chl in diatom-dominated stations and 
performed best with cyanobacteria populations, particularly Microcystis- 
dominated waters, showing algorithm sensitivity to community 
composition. Ideally, the influence of community composition would be 
considered during algorithm development. The approach used in our 
analysis did not separate validation points by algal type as the infor-
mation was not available in our in situ data set and, perhaps, some 
spread and error in the retrievals can be attributed to diversity in the 
phytoplankton populations considered. However, the ChlBS algorithm is 
specifically for cyanobacteria dominated lakes, that is, because the al-
gorithm is based on CIcyano, the process inherently filters for cyano-
bacteria dominated bodies of water. Nonetheless, mixed phytoplankton 
communities may register a valid CIcyano value, which could introduce 
more error and uncertainty into the algorithm application. A future 
viable alternative approach may utilize validation that considers com-
munity composition and then applies a community-specific algorithm 
used to estimate Chl. 

The bootstrapping approach using a CONUS match-up data set to 
modify the CIcyano to Chl relationship allowed for coefficient adjustment 
and derivation of confidence intervals that resulted in an algorithm 
more suitable for the diverse set of CONUS lakes, which ranged from 
oligotrophic to hypereutrophic conditions. The ChlBS exercise demon-
strated that bootstrapping provides a useful alternative approach for 
remote sensing algorithm creation compared to the traditional least 
squares assignment of a linear relationship through the calibration 
points. Bootstrapping has been used successfully for Chl algorithms in 
other systems including in the Red Sea (Brewin et al., 2015) and the 
Great Lakes (Lesht et al., 2016), and offers an approach for consideration 
when using limited local data sets to develop a better performing algo-
rithm for regional waterbodies. Another bootstrapping advantage is 
confidence intervals around the coefficients, which provide insights into 
the strength of the estimated relationships between the variables Fig. 8; 
C,D). Large confidence intervals, which could result from outliers in the 
data set, indicates a weak, poorly constrained relationship, while 
reduced confidence intervals would suggest a stronger algorithm. The 
approach made it possible to get relatively good estimates for CONUS, 
but for increased precision some regional tuning may be necessary. 

5. Conclusions 

We produced the first full standardized MERIS (2002–2012) inland 
water time series, inclusive of radiometric products and an indicator of 
cyanoHABs, CIcyano, for use universally in algorithm development and 
performance assessment, as well as CONUS plus Alaska water quality 
monitoring activities. The primary contribution of this work is the public 
distribution of this data set, with similar Sentinel-3A and -3B OLCI data 
sets planned to follow (see Appendix B). We also explored the derivation 
and utility of a CIcyano-to-Chl algorithm for application across CONUS. 
The estimation of Chl for inland waterbodies utilizing the readily 
available CIcyano variable showed some potential. The original CIcyano- 
based Chl algorithm, ChlT16, was developed for eutrophic waters in 
Florida, USA (Tomlinson et al., 2016). A bootstrapping recalibration of 
the algorithm, ChlBS, demonstrated that the re-tuned algorithm is also 
appropriate for low Chl waters, albeit less precise and accurate in this 
range that for eutrophic conditions. Bootstrapping was demonstrated to 
be an effective approach to improve algorithm performance as large in 
situ data sets become available. 
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Ultimately, the need for reliable satellite remote sensing of inland 
bodies of waters for monitoring, management decisions, and global 
climate modeling has been well documented. A standardized and easily 
available satellite data set should substantially facilitate and enable 
future work in this arena. In addition, well-validated satellite algorithms 
can be used to create a historical inland waters data set that allows 
evaluation of changes in waterbodies over time. The ChlBS algorithm 
explored in this work performed well for categorizing lakes into trophic 
status. These approaches are immediately available to support resource 
management decisions, such as cyanoHAB warnings, early detection 
activities, and lake trophic classification. However, the retrieval errors 
are relatively large and therefore may be unsuitable for precise estimates 
of Chl, therefore limiting the type of analyses that can be robustly 
interpreted. To that end, we offer a bootstrapping case study that pro-
vides confidence intervals as a step forward in uncertainty assessment. 
Perhaps more importantly, the contribution of ILW – a daily time series 
of more than 2000 lakes across CONUS and 5000 in Alaska– can further 
support community progress in the development and performance 
assessment of improved algorithms and approaches. 

Authors' responsibilities 

All authors participated in discussions and in pre-submission reviews 
of the manuscript. Bridget Seegers, as the lead author, headed the 
analysis and did the bulk of the writing. She coordinated efforts with co- 
authors to maximize their contributions. Jeremy Werdell provided 
expertise on satellite remote sensing and algorithm assessment and 
contributed directly to the section on satellite processing, participated in 
active conversations during manuscript development, and gave com-
ments on all manuscript versions. Ryan Vandermeulen provided satellite 
imagery and spectra as well as insightful comments on the manuscript. 
Wilson Salls acquired and filtered the data as well as providing mean-
ingful and thoughtful comments on the draft manuscripts. Rick Stumpf, 
with much experience with HAB remote sensing, provided guidance on 
manuscript scope and comments on the draft manuscript. Blake 
Schaeffer, as a key collaborator, gave direction on manuscript focus and 
important comments on the draft manuscript. Tommy Owens and Sean 
Bailey produced the satellite data set making the research possible. In 
addition, they contributed to the manuscript by providing details on 
remote sensing product processing and detailed description of the data 
set. Joel Scott was responsible for the satellite to in situ remote sensing 
and provided comments on the draft manuscript. Keith Loftin is an 
expert on HABs and provided guidance and feedback on the draft 
manuscripts. 

Declaration of Competing Interest 

None. 

Acknowledgements 

We thank Jason Lefler and Christopher Proctor for their invaluable 
assistance, Caren Binding for insightful conversations, Erdem Karaköylü 
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